[LeetCode] Problem 980 - Unique Paths III

On a 2-dimensional grid, there are 4 types of squares:

  • 1 represents the starting square. There is exactly one starting square.
  • 2 represents the ending square. There is exactly one ending square.
  • 0 represents empty squares we can walk over.
  • -1 represents obstacles that we cannot walk over.

Return the number of 4-directional walks from the starting square to the ending square, that walk over every non-obstacle square exactly once.

Example

No.1

Input: [[1,0,0,0],[0,0,0,0],[0,0,2,-1]]

Output: 2

Explanation: We have the following two paths:

  1. (0,0),(0,1),(0,2),(0,3),(1,3),(1,2),(1,1),(1,0),(2,0),(2,1),(2,2)
  2. (0,0),(1,0),(2,0),(2,1),(1,1),(0,1),(0,2),(0,3),(1,3),(1,2),(2,2)

No.2

Input: [[1,0,0,0],[0,0,0,0],[0,0,0,2]]

Output: 4

Explanation: We have the following four paths:

  1. (0,0),(0,1),(0,2),(0,3),(1,3),(1,2),(1,1),(1,0),(2,0),(2,1),(2,2),(2,3)
  2. (0,0),(0,1),(1,1),(1,0),(2,0),(2,1),(2,2),(1,2),(0,2),(0,3),(1,3),(2,3)
  3. (0,0),(1,0),(2,0),(2,1),(2,2),(1,2),(1,1),(0,1),(0,2),(0,3),(1,3),(2,3)
  4. (0,0),(1,0),(2,0),(2,1),(1,1),(0,1),(0,2),(0,3),(1,3),(1,2),(2,2),(2,3)

No.3

Input: [[0,1],[2,0]]

Output: 0

Explanation:
There is no path that walks over every empty square exactly once.
Note that the starting and ending square can be anywhere in the grid.

Note

  1. 1 <= grid.length * grid[0].length <= 20

Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
public int uniquePathsIII(int[][] grid) {
int m = grid.length;
int n = grid[0].length;
int[][][] dp = new int[m][n][1 << (m * n)];
int state = 0;
int startX = 0;
int startY = 0;

for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if (grid[i][j] == 0 || grid[i][j] == 2)
state |= getKey(i, j, n);
else if (grid[i][j] == 1) {
startX = i;
startY = j;
}
}
}

return dfs(grid, dp, state, m, n, startX, startY);
}

private int dfs(int[][] grid, int[][][] dp, int state, int m, int n, int x, int y) {
if (dp[x][y][state] != 0)
return dp[x][y][state];
else if (grid[x][y] == 2)
return state == 0 ? 1 : 0;

int[][] dirs = {{1, 0}, {-1, 0}, {0, 1}, {0, -1}};
int result = 0;

for (int[] dir : dirs){
int newX = x + dir[0];
int newY = y + dir[1];

if (newX < 0 || newY < 0 || newX >= m || newY >= n || grid[newX][newY] == -1)
continue;

if ((state & getKey(newX, newY, n)) == 0)
continue;

result += dfs(grid, dp, state ^ getKey(newX, newY, n), m, n, newX, newY);
}

dp[x][y][state] = result;
return dp[x][y][state];
}

private int getKey(int x, int y, int n) {
return 1 << (x * n + y);
}